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SUMMARY 
 

Standard factorial designs (one array) offer a cost-effective and information-efficient robust design 
alternative to parameter designs (two-array) made popular by Taguchi.  This paper compares these two methods 
(one-array versus two-array) in depth via an industrial case study.  It then discusses advanced tools for robust design 
that involve application of response surface methods (RSM) and measurement of propagation of error (POE). 
 
PARAMETER DESIGN ADVOCATED BY TAGUCHI (TWO-ARRAY) 
 

In the early 1980’s, the methods of Genichi Taguchi became popular as a tool for quality improvement, 
especially in the automotive industry.  Taguchi provided a focus on robust design that reached fruition in the Six 
Sigma movement.  The basic philosophy of robust design is that it’s desirable to develop processes that consistently 
produce product to target with minimal variation. 

To achieve this objective, Taguchi advised that input variables be divided into two categories: 
1. Control factors, for example the adjustments a technician makes to your office copier. 
2. Noise factors, for example the humidity that fluctuates in your office environment. 

Ideally, processes will be adjusted via the control factors to be insensitive to the noise factors, whose 
variation presumably cannot be eliminated.  For example, the office copy machine should handle paper properly 
during humid summer months as well as in the winter, when conditions are dry and prone to static electricity.  To 
accomplish these objectives, Taguchi advocated planned experimentation using a layout called “parameter design” 
(Ross, 1988, page 170). 

To illustrate parameter design, let’s look at an industrial example - development of a new method for 
attaching an elastomeric connector to a nylon tube.  We won’t show any numerical data or analysis because, as will 
be shown later, there’s a more efficient approach to accomplishing the same objectives for robust design.  Data and 
analysis will be included at this stage of the paper. 

In this case, the objective is to consistently deliver a specified pull-off force via three control factors: 
A. Sanding (affects the smoothness/friction of the interfering surfaces – inner connector to outer tube) 
B. Connector wall thickness 
C. Insertion depth. 

The following noise variables, all related to storage of the connector, are not normally controlled during 
production, but they will be included in the experiment:  
D. Time 
E. Temperature 
F. Relative humidity 
G. Ultraviolet (UV) exposure (depends on opacity of packaging as well as exposure to various forms of light). 

Factor levels should be selected from the extremes, in order to maximize the possible effect seen.  The 
practicality of this was recognized by W. Edwards Deming, who said “start with strata near the extremes of the 
spectrum of possible disparity…as judged by the expert in subject matter.”  In this case, the subject matter experts 
reviewed the historical records on storage of the tubing and identified the extreme environment conditions before 
establishing the experimental ranges. 

In general, a parameter design is composed of two parts: 
1. An inner array of control factors 
2. An outer array of noise variables. 



Table 1 shows the parameter design that we propose for the connector case.  As noted below, it varies 
somewhat from that shown by Taguchi and his disciples (such as Ross). 
1. The control factors are studied via a full two-level factorial design (23), which provides complete resolution of 

all effects.  The 8 runs are listed in standard (“Std.”) order, which differs from that used by Taguchi. 
2. The noise variables go into a standard half-fraction two-level design (24-1).  This design resolves main effects 

fairly well, but it leaves two-factor interactions aliased (Anderson and Whitcomb, 2000, page 95).  The 8 runs in 
this portion of the parameter design (the outer array) are also listed in standard order. 

We altered the Taguchi form of parameter design to improve it and achieve consistency with the one-array design 
alternative discussed later in this paper. 

The levels in both arrays are coded minus (–) and plus (+) for the low and high levels; respectively, rather 
than the numbers 1 and 2 used by Taguchi for what he calls the first and second levels.  The number of runs in the 
parameter design for the connector case totals 64 (8 inner x 8 outer). 
 
   Outer Array (noise variables) 
   Std

 
1 2 3 4 5 6 7 8 

   D – + – + – + – + 
   E – – + + – – + + 
   F – – – – + + + + 
   G – + + – + – – + 

 

Inner Array 
(control factors) 

Raw Data Responses 

Std A B C  Mean Std.  
Dev. 

1 – – –           
2 + – –           
3 – + –           
4 + + –           
5 – – +           
6 + – +           
7 – + +           
8 + + +           

Table 1:  Parameter design for connector study 

We advise that whenever practicable the actual runs in any DOE be done in random order, which avoids 
possible confounding of effects with time-related lurking variables, such as machine wear and the like.  In any case, 
after collecting all the raw data, the experimenter should then calculate the mean and standard deviation (“Std. 
Dev.”).  We recommend that these summary statistics be analyzed separately before putting them in the form of a 
ratio, such as Taguchi’s signal-to-noise, thus preserving valuable information that might be lost otherwise.  The 
significant factors, identified via analysis of variance (ANOVA), will fall into one of four classes (Ross, page 175) 
affecting: 

I. Both average (mean) and variation (standard deviation) 
II. Variation only 

III. Average only 
IV. Nothing. 

The strategy is to pick proper levels of class I and II factors to reduce variation.  Then adjust the class III 
factor(s) to bring the average to the target level. 

Parameter design neatly accomplishes the goal of determining a setup of control factors that will be robust 
to variations caused by noise factors.  However, as demonstrated below, this experiment can be designed in such a 
way that reveals essentially as much information on the effects of control factors and noise variables, but with only 
half the data (and work needed to generate it!). 
 



MORE EFFICIENT ALTERNATIVE DESIGN THAT COMBINES ALL FACTORS INTO ONE ARRAY 
 

Let’s look at an alternative design option for the connector study.  It combines all the factors, control and 
noise, into one two-level factorial array (see Table 2).  This design, a standard quarter-fraction (27-2), requires only 
32 runs. 

Std A B C D E F G Pull- 
off 

Force 
1 – – – – – + + 15.61 
2 + – – – – – – 14.56 
3 – + – – – – – 14.52 
4 + + – – – + + 16.62 
5 – – + – – – – 20.96 
6 + – + – – + + 26.29 
7 – + + – – + + 17.01 
8 + + + – – – – 15.43 
9 – – – + – – + 23.09 

10 + – – + – + – 27.64 
11 – + – + – + – 18.85 
12 + + – + – – + 16.60 
13 – – + + – + – 27.69 
14 + – + + – – + 26.69 
15 – + + + – – + 22.52 
16 + + + + – + – 26.66 
17 – – – – + + – 13.82 
18 + – – – + – + 10.39 
19 – + – – + – + 14.38 
20 + + – – + + – 19.41 
21 – – + – + – + 19.57 
22 + – + – + + – 24.39 
23 – + + – + + – 19.99 
24 + + + – + – + 17.57 
25 – – – + + – – 14.75 
26 + – – + + + + 18.75 
27 – + – + + + + 15.66 
28 + + – + + – – 14.12 
29 – – + + + + + 20.02 
30 + – + + + – – 17.68 
31 – + + + + – – 21.21 
32 + + + + + + + 26.97 

Table 2:  Alternative (single array) design for connector study 

The complete alias structure for this design can be seen in textbooks (Anderson and Whitcomb, 2000, 
Appendix 2-4) so we won’t show it all here.  All main effects can be estimated clearly because they’re aliased only 
with interactions of three or more factors, which by common practice are assumed to be negligible.  Furthermore, all 
two-factor interactions involving A, B or C (the control factors) are also aliased only with three-factor interactions, 
so they can be relied upon as well.  The only aliasing of any concern occurs among the noise variables - D, E, F and 
G: 
• [DE] = DE + FG 
• [DF] = DF + EG 
• [DG] = DG + EF 

Normally, any aliasing of two-factor interactions might be considered somewhat risky, especially in this 
case, considering the nature of the noise variables: time (D), temperature (E), humidity (F) and ultraviolet exposure 
(G).  All of these factors might interact in chemical reactions that degrade the elastomeric connector material.  It 



would be nice to clearly identify all possible interactions, but given that the noise variables will not be controlled in 
the production environment, why waste time studying this? 

Let’s see what the statistical analysis reveals and whether the objectives of robust design can be 
accomplished.  (Disclaimer: The response data (“Pull-off Force”) comes from a simulation designed to generate a 
thought-provoking analysis, so any resemblance to a real manufacturing process is purely coincidental.)  We begin 
our story by viewing a half-normal plot of the effects (Figure 1), produced with the aid of DOE software (Helseth, et 
al, 2001).  It shows the relative impact of the 31 effects that can be estimated from the 32 unique runs in the design. 
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Figure 1: Effects plot 

The labeled effects are statistically significant with more than 99.99% confidence according to analysis of 
variance (ANOVA).  (We did a good job on the simulation!)  Before interpreting the results, it will help to 
categorize factors as follows: 
1. Control factors involved in interactions with noise variables (A with F, B with E) 
2. Control factors not involved in interactions with noise variables (C) 
3. Noise variables not involved in interactions with control factors (D, E) 
4. Control factors that have no effect (none in this case) 
5. Noise variables that have no effect (G) 

First of all, let’s look at the interaction graphs for AF and BE (Figures 2 and 3).  
 

 
Figures 2a, 2b: Interactions of control by noise – AF (left) and BE (right) 

When displaying interactions in this category (control by noise), interpretation comes easier by putting the 
noise factor on the X-axis.  To find the conditions that will be most robust, simply find the flats – the operating lines 
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that remain least affected by noise.  In this case, the flats are found with sanding set at the low level (A–) and wall 
thickness at its high level (B+), thus making the process robust to variations in humidity (F) and temperature (E); 
respectively. 

Setting A and B to minimize variation make these two factors inflexible for controlling the response.  
That’s where factor C (insertion depth) comes into play.  It falls into the second category of factors that do not 
interact with noise variables.  The effect of C is shown in Figure 3. 
 

 
Figure 3: Main effect of factor C, which does not interact with any noise variables, thus making it good for control 

Using this figure as an operating curve, the experimenter can adjust factor C upwards or downwards to 
increase or decrease the response (pull-off force) so it meets the required specification (not shown, but presumably a 
range – not too low or too high). 

The last thing to look at are noise variables that do not interact with control factors.  In this case, variables 
D (time) and E (temperature) fall in this category as well as their interaction effect (DE).  Remember that DE is 
aliased with FG in this design, so we can’t be sure that DE really does create an effect.  However, one of the parent 
terms of FG, G (UV exposure), does not exhibit significant effects.  On the other hand, both D and E are significant, 
so it’s a good bet that their ‘child,’ DE, really is the significant interaction rather than its alias - FG.  
 

 
Figure 4: Interaction of noise by noise variables - DE 

What, if anything, can be done when a process is significantly affected by noise variables?  The obvious 
answer is to impose control.  For example, in this case nothing can be done about the time (D) the connector stays in 
storage (variable D), but temperature (E) could be controlled with the proper equipment.  The high level (E+) moves 
the response to the flat line on the interaction graph, which will be robust to the affects of varying time, so it would 
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be wise to invest in some space-heating (it gets cold in Minnesota!).  This will put the process that much closer to 
conformance with Six-Sigma objectives. 

This brings our story to a satisfying conclusion.  The experimenter now knows how to control the pull-off 
force of the elastomeric connector from the nylon tube and minimize the impact of noise variables.  The two-array 
parameter design most likely would have generated the same results, but with twice the effort (64 runs versus the 32 
runs in the single-array 27-2 design).  The information on interactions of noise variables is a big bonus obtained by 
choosing the 27-2 option for robust design.  This detail would typically get overlooked by experimenters following 
procedures advocated by Taguchi because the focus remains only on the control factors. 

As a postscript to the story, note that there may be control factors that are not significant (category 4).  You 
may be tempted to set these factors at levels that are most economical or convenient for operation, but that would 
not be consistent with the objectives of robust design.  It’s best to leave the insignificant factors at their mid-level in 
case they might vary.  Hopefully such variation will occur within the experimental range and thus should not affect 
the process. 

Similarly, some noise variables, such as the exposure to UV in this case, may not create significant effects 
on the response (category 5).  At the very least, this might justify leaving these variables uncontrolled.  For example, 
in this case, it appears that there would be no advantage to spending money on new, UV-resistant packaging for the 
connectors. 
 
ADVANCED TOOLS FOR ROBUST DESIGN: RESPONSE SURFACE METHODS (RSM) AND 
MEASUREMENT OF PROPAGATION OF ERROR (POE) 
 

A more advanced approach to robust design makes use of response surface methods (Myers and 
Montgomery. 2002).  Figure 5 shows an example of a response surface generated from the interaction DE in the 
connector case. 
 

 
Figure 5: Response surface plot of interaction DE 

Consider how variations in time get transmitted to the response (pull-off force).  These variations will be 
substantially reduced at the flatter portion of the surface (in front), where temperature gets set at its high (+1) level.  
A mathematical tool called propagation of error (POE) can be applied to quantify the error transmitted via the 
response surface from the variations in input factors, which must be determined beforehand from repeatability 
studies, SPC or ANOVA on prior DOE data (Anderson and Whitcomb, 1996). 

To get a feel for POE, consider a very simple, fun and practical example: driving through rush hour traffic 
(Anderson, 2002).  Figure 6 shows how timing is everything if you want to get to work consistently on time.  It 
shows how drive time (in minutes) varies as a function of the time of departure (minutes after 6:30 A.M.).  Notice 
the waviness that occurs due to traffic patterns.  Assume that the driver won’t leave exactly at the targeted departure 
time – this will vary over a 10 minute window.  That variation in departure will be transmitted via the response 
curve to the drive time.  At T1 this variation is very slight (see the small arrow on the drive time axis).  However, 
only a short while later at T2, the variation gets amplified (see the big arrow on drive time) by the steep curve that 
results from daily traffic jams in the heart of the rush hour. 
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Figure 6: Variation transmitted from input factor (departure time) to output response (drive time) 

RSM generates polynomial models to fit data such as that collected on drive time.  The model used to 
create the curve in Figure 6 is cubic: 
1. Drive time = Y = 32.13 + 1.72X – 0.102X2 + 0.00159X3 

When the model reveals curvilinear relationships between controllable factors and responses, such as the 
drive time case, transmitted variation can be reduced by moving to plateaus.  The catch-phrase for robust design, as 
stated earlier, is “find the flats.”  These can be located by generating the POE, which involves some calculus 
(Anderson and Whitcomb, 1996).  The first step is calculation of the response variance (σy

2): 
2. σy

2 = (δY/δX)2 σX
2 + σe

2 
where σX

2 is the variance of the input factor X and σe
2 is the residual variance which comes from the analysis of 

variance (ANOVA). In the drive time case these values are: 
3. σX

2 = (5 minutes)2 = 25 
4. σe

2 = Mean square residual from ANOVA = 5.18 
The partial derivative of the response Y with respect to the factor X (δY/δX) for the drive time model is: 
5. δY/δX = 1.72 – 0.204X + 0.00477X2 
The POE is conveniently expressed in the original units of measure (minutes of drive time in this case) by taking the 
square root of the variance of response Y via this final equation: 
6. POE = [σy

2]0.5 = [(δY/δX)2 σX
2 + σe

2]0.5 = [(1.72 – 0.204X + 0.00477 X2)2*25+5.18]0.5 
With the aid of software (Helseth, et al, 2002), the POE can be calculated, mapped and visualized.  Figure 7 

shows the POE for the drive time case study.  It exhibits two local minima, one for the peak at 11.5 (a high ‘flat’ 
point) and one for the valley at 31.5 (a low ‘flat’ point). 

 

 
Figure 7: POE of drive time versus departure time 
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The drive time example involves only one factor.  Generally, robust design via RSM involves more than 
one factor.  In fact, for purposes of robust design, the experimenter should try to include control factors and noise 
variables thought to be significant based on past experience (prior DOE) or subject matter knowledge.  Ideally, the 
analysis will reveal that factors affect the response in various ways: 
1. Non-linear (curved surface) 
2. Linear 

The non-linear factors, such as temperature in the connector case, should be set at levels that minimize 
POE.  On the other hand, as shown in Figure 8, the variation transmitted by a linear factor (X2) will be constant, so 
POE becomes irrelevant. 
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Figure 8: Variation transmitted from a linear factor (X2) 

Therefore, linear factors can be freely adjusted to bring the response into specification while maintaining 
the gains made in reducing variation via POE on the non-linear factors.  The ideal case is represented by Figure 9.  
The top curve represents production before applying the tools of robust design. 

"Before"

"After"

 

Figure 9: Achieving variability reduction by intelligent manipulation of factor levels 

With information gained from POE analysis, the experimenter can adjust the non-linear factor(s) to 
minimize process variation.  This tightens the distribution as shown by the middle curve in Figure 9.  However, 
average response now falls off target.  Therefore, a linear factor, such as X2 in Figure 8,  must be adjusted to bring 
the process back into specification (the “After” curve).  Thus, the mission of robust design and Six Sigma is 
accomplished. 
 



CONCLUSIONS 
 

As shown by example, standard two-level fractional factorials (one array, 2k-p) are more efficient and 
provide more information than the two-array parameter designs advocated by Taguchi.  For any given parameter 
design, it will be worthwhile to investigate alternative 2k-p designs to see if the number of runs can be reduced and/or 
more effects resolved, particularly those involving interactions of noise variables.  If control can be imposed on 
certain noise variables, the effects of other noise variables might be reduced.  This information would likely be lost 
in the overly simplistic approach of parameter design, which somewhat arbitrarily distinguishes control factors from 
noise variables. 

Experimenters should consider how much variation can be anticipated in all the variables.  This data, 
typically entered in the form of standard deviations, can then be made use of in the calculation of propagation of 
error (POE).  POE, in conjunction with response surface methods (RSM), facilitates the search for robust operating 
regions – the flats where variations in input factors do not get transmitted much to the response.  The end-result of 
applying these advanced tools will be in-specification products that exhibit minimal variability – the ultimate 
objective of robust design and Six Sigma. 
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